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ADAPTIVE ALGEBRAIC MULTIGRID FOR SEQUENCE OF PROBLEMS
WITH SLOWLY VARYING RANDOM COEFFICIENTS

D. KALCHEV ∗, C. KETELSEN ∗, AND P. S. VASSILEVSKI ∗

Abstract. This paper proposes an adaptive strategy for reusing previously constructed hierarchy of

coarse spaces by algebraic multigrid, to construct a multilevel solver for a problem with nearby characteris-

tics. A main target application is the linear problems that appear throughout a sequence of Markov Chain

Monte Carlo simulations of subsurface flow with uncertain permeability field. The efficacy of the method is

demonstrated with extensive set of numerical experiments.
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1. Introduction. We are interested in solving sequences of linear systems originating
from finite-element discretization of elliptic partial differential equations (PDEs) where the
entries of the matrix change gradually throughout the sequence. Such sequences arise natu-
rally in the iterative solution of nonlinear PDE [7], topology optimization in material design
[15] and the quantification of uncertainty in physical systems via the Markov chain Monte
Carlo (MCMC) method [18].

Of particular interest is the case of uncertainty quantification in subsurface flow simula-
tion when prior geological models of the hydraulic conductivity field must be conditioned to
observed data [10]. The MCMC method is used to sample from the posterior distribution,
but requires the numerical solution of many thousands of PDEs with gradually changing
highly heterogeneous diffusion coefficient. Furthermore, the solver must be robust enough
to handle higher-order discretizations and anisotropic media with coefficients varying sev-
eral orders of magnitude over small length scales. The necessary linear system solves make
up the majority of the computational cost of such simulations [10]. As such, robust and
efficient solvers are vital to efficient implementations of simulations.

The proposed method attempts to use a multilevel hierarchy developed for a previous
linear system, to quickly build a new hierarchy that can be effectively used to solve a
linear system with similar coefficient. It does this by drawing on well established techniques
from the multilevel solver literature. As in the element-based algebraic multigrid (AMGe)
method [2],[12], the proposed method uses local coarse problems naturally defined by the
global finite element space to obtain coarse basis vectors which accurately capture local
features of the problem. By incorporating ideas from smoothed aggregation (SA) multigrid
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([19]),the developed coarse space has good convergence properties independent of the large
contrast in the background coefficient [6]. In adapting the old hierarchy for the new problem,
the now ubiquitous adaptive AMG methodology (see [3],[4], and in the context of element-
based AMG, or AMGe, see [21], [14], [20]) is used to automatically identify precisely the
modes that should be incorporated into the new solver. The notion of developing general
strategies to solve many realizations from a large parameter-dependent family of problems
can be addressed by dimension reduction approaches. Such methods exploit an off-line setup
phase to construct a reduced basis for the entire parameter space. Then in the simulation
phase, the solver draws on the previously computed reduced basis to quickly produce coarse
hierarchies suitable for the current problem realization. For recent studies in this direction,
with emphasis on building coarse-scale models, we refer to [11] (and the references therein).
Our proposed method differs from such schemes because it produces accurate enough coarse
spaces on the fly, without the need for an offline setup. A systematic preliminary study
of the presented adaptive solver strategies was performed in the master thesis of the first
author, [13].

The remainder of the paper is organized as follows: In Section 2 we describe the model
problem that we wish to solve and the finite-element discretization used to arrive at the
linear system. We also describe a sequence of linear systems arising from a simplified MCMC
subsurface flow simulation. In Section 3 we present background information on multigrid
solvers and describe the two-level adaptive methodology that we utilize to efficiently solve
the sequence of linear systems. In Section 4 we present a series of numerical experiments
based on MCMC simulation which demonstrate the effectiveness of the proposed method.
Finally, we make some concluding remarks in Section 5.

2. Background.

2.1. Model Problems. The simplest model problem with close analogy to subsurface
flow is the single-phase steady-state flow equations given by

q (x, ω) + k (x, ω)∇p (x, ω) = g (x) in D × Ω,(2.1)

∇ · q (x, ω) = f (x) in D × Ω,

subject to suitable boundary conditions. Here, q is the Darcy flux, k is the hydraulic
conductivity field, and p is the pressure head. The variation of the PDE coefficient is
parametrized by ω, where ω can be a single parameter or a vector of parameters (i.e.
ω = [ω1, . . . , ωM ]). In topology optimization ω may describe the shape of a solid material
in a background void. Alternatively, in uncertainty quantification of subsurface flow, ω

may represent a stochastic variable from some probability space Ω which describes the
geological properties of the subsurface. Notice that since the pressure and flux depend on
the conductivity field (nonlinearly through the solution of the PDE) p and q depend on
parameter ω as well.
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Re-writing (2.1) as a 2nd-order elliptic equation, and prescribing appropriate boundary
conditions, we have

−div [k (x, ω)∇p (x, ω)] = f (x)−∇ · g (x) in D × Ω

p (x) = g
D
(x) on ∂DD(2.2)

∇p (x) · n = g
N
(x) on ∂DN

In practice, the source term and boundary conditions can depend on parameter ω as well.
For simplicity we do not consider such cases here but the proposed method can be easily
extended to these cases.

Finally, we are particularly interested in the case when the conductivity field is highly
anisotropic. In this case k (x, ω) can be written as a d-dimensional tensor, i.e. for the case
d = 2, we have

k (x, ω) =

[
k11 (x, ω) k12 (x, ω)
k21 (x, ω) k22 (x, ω)

]
.(2.3)

2.2. Discretization. Consider the polygonal domain D ⊂ R2. Let Th be a quasi-
uniform triangulation of D with characteristic mesh size h and let {τ} be the collection of
elements in Th. Let Vh be the finite element space associated with Lagrangian degrees of free-
dom Nh. We assume that each fixed realization of conductivity field k (x, ω) is represented
component-wise by piecewise-polynomial functions of degree one less than the polynomial
basis in Vh. As an example, if we take Vh to be the space of piecewise linear functions over
Th, then the dofs in Nh coincide with vertices of the triangular elements, and k (x, ω) is
represented by piecewise constants over each element.

For fixed ω, the bilinear form corresponding to model problem (2.3) is

a (u, v) =
∫

D

k (x, ω)∇u · ∇v dx.(2.4)

Let ϕj be the basis function associated with dof j. The semidefinite fine-grid element
stiffness matrix associated with element τ can be expressed as

[Aτ ]ij =
∫

τ

k (x, ω)∇ϕj · ∇ϕi dx, ∀i, j ∈ τ.(2.5)

Finally, the global fine-grid stiffness matrix A can be defined and assembled according to

uT Av =
∑
τ∈Th

uT
τ Aτvτ ,(2.6)
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where uτ represents restriction of global finite-element function u (or rather, its coefficient
vector) to element τ .

2.3. Monte Carlo Simulation. In subsurface simulation the goal is to compute mo-
ments of some quantity of interest given reasonable assumptions on the uncertainty in the
data. In a simple case this could mean assuming that the subsurface properties can be accu-
rately modeled via a log-normal Gaussian field ([16]) and running a simulation to compute
moments of the effective conductivity near some retrieval site.

Suppose that the conductivity field k belongs to probability distribution π (k) and we
wish to compute moments of some quantity of interest Q which, in the case of the model
problem, is a function of conductivity field k and pressure p. The mean of the quantity of
interest can be approximated using a Monte Carlo estimator

Q̂MC =
1
N

N∑
i=1

Q(i),(2.7)

via Algorithm 2.3.

Algorithm 2.1 General Monte Carlo Estimator

PROCEDURE: Q̂MC ←MC (N).
INPUT: Number of samples N .
OUTPUT: Mean of quantity of interest Q̂MC .
for i = 1, . . . , N do

Draw sample k(i) from probability distribution π(k).
Solve model problem for p(i) with k(i) as coefficient.
Compute quantity of interest Q(i) ≡ Q(i)

(
p(i); k(i)

)
.

end for

Compute Q̂MC = 1
N

N∑
i=1

Q(i).

The sampling procedure in Algorithm 2.3 depends greatly on the modeling choices made
prior to beginning the simulation. A simple and popular choice is to model the conductivity
field k as a log-normal random field with two-point correlation structure [16]. In this setting
k is expanded in a so-called truncated Karhunen-Loève Expansion (KLE) as follows:

k (x, ω) = exp [YM (x, ω)],(2.8)

where

YM (x, ω) = Y0 (x) +
M∑

j=1

√
λjφj(x) ξj(ω) .(2.9)
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Here, M is the number of terms in the expansion, Y0 (x) is the mean, and (λj , φj) are
eigenpairs of the integral equation with the so-called covariance function C(x,x′) as the
kernel, where

C(x,x′) = σ2
k exp

(
−|x1 − x′1|

γ1
− |x2 − x′2|

γ2

)
.(2.10)

Here, σ2
k is the variance of the stochastic process and γj is the correlation length in the jth

direction. Larger values of σ2
k lead to larger jumps in the conductivity while smaller values

of γ lead to higher frequency oscillations. The stochastic basis functions ξj(ω) are normal
random variables with zero mean and unit variance.

For the form of covariance function C given in (2.10) there exist analytic expressions for
the spatial basis functions φ [16]. Then, to draw a random sample from the desired probabil-
ity distribution only requires generating M i.i.d. (independent and identically distributed)
normal random variables ξj and evaluating k(x, ω) according to (2.9)-(2.10).

Given a random sample k(i) obtained via the KLE, the remaining steps in Algorithm
2.3 are familiar. Next, the governing PDE is discretized based on the supplied conductivity
data and the resulting linear system is solved. With solution in hand, the computation Q(i)

requires the evaluation of some given functional of p(i) and k(i).

2.4. Markov Chain Monte Carlo Simulation. When distribution π(k) is simple
(e.g. log-normal with two-point correlation structure), the computation of Q̂MC is relatively
straight-forward. However, major difficulties arise when we wish to incorporate dynamic
data (e.g. observed pressure values or flow rates) in the distribution of k. It is in this case
that Markov chain Monte Carlo (MCMC) methods become necessary, because they give a
computationally feasible way of sampling from such complex (and not necessarily, explicitly
given) distributions.

Suppose that, in general, the subsurface can be reliably modeled by some prior distri-
bution P (k), which is easy to sample from (e.g. log-normal). Suppose next that we are
given some observed data F that we believe to be accurate, up to some level of measurement
error. Then, in the Monte Carlo estimator given in Algorithm 2.4, we wish to draw samples
of k from the prior distribution conditioned to the observed data. That is, we wish to sample
from the conditional probability distribution P (k|F ). In our tests we will assume F comes
from measurements of the pressure head at several fixed points in the domain. From Bayes’
Law we have

P (k|F ) ∝ P (F |k) P (k) .(2.11)

Here, P (k) is the prior and P (F |k) is a likelihood function describing the conditional prob-
ability that data F is observed given that k is the true conductivity field. We model the
likelihood function as a Gaussian:
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P (F |k) ∝ exp

(
−‖F − Fk‖2

σ2
f

)
,(2.12)

where σ2
f is the likelihood variance and Fk is the model response obtained by solving the

forward problem with k as the fixed conductivity field. Finally, we can write the desired
posterior distribution as

π (k) = P (k|F ) ∝ exp

(
−‖F − Fk‖2

σ2
f

)
P (k) .(2.13)

With the prescribed posterior, we can use any number of flavors of MCMC to generate
samples from π(k). For this paper we use the standard Metropolis-Hastings algorithm [18].
Additionally, we require a transition probability q (k′|k) that describes a transition from
field k to field k′. There are many choices for transition probability q. In this paper we will
be primarily concerned with two, namely the independent sampler and the random walker.

The Metropolis-Hastings algorithm for general q is described in Algorithm 2.4.

Algorithm 2.2 Metropolis-Hastings MCMC

PROCEDURE: kn+1 ←MH (kn).
INPUT: Current conductivity sample kn.
OUTPUT: New conductivity sample kn+1.
Generate proposal k′ from transition probability q (k′|kn).
Compute acceptance probability

α (kn, k′) = min
(

1,
π (k′) q (kn|k′)
π (kn) q (k′|kn)

)
.

Take kn+1 = k′ with probability α (kn, k′), and kn+1 = kn with probability 1−α (kn, k′).

After a sufficiently long burn-in phase, it can be shown (as is well-known, [18]) that
samples {kn} come from the desired posterior distribution π (k). These samples are then
used in a Monte Carlo estimator to compute moments of quantities of interest. Note again
that each evaluation of π (k) requires solution of the forward model problem (2.3). For
complicated applications this solve phase is the main computational bottleneck in the sim-
ulation. Furthermore, in the MCMC setting, the vast majority of proposals are rejected,
greatly adding to the computational cost of sampling.

The performance characteristics of the method greatly depend on the choice of tran-
sition probability q (k′|k). We will utilize two very different transition probabilities in our
numerical experiments. The first is the so-called random walker. In this case each random
coefficient in the KLE of k (x, ω) is perturbed slightly by an i.i.d. normal random variable
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with zero mean and variance δ2
k (i.e., from N

(
0, δ2

k

)
). That is, for j = 1, . . . ,M draw ηj

from N
(
0, δ2

k

)
and set

ξ′j = ξj + ηj .(2.14)

The size of the random walk is determined by the step-size parameter δk. For small choices
of δk proposal configuration k′ will be fairly similar to configuration k. The trade-off in
the choice of step-size is that if k is a highly likely configuration and δk is small then it’s
probable that k′ will also be a likely configuration and will be accepted in the Algorithm
2.4. On the other hand, if the step-size is too small then it will take a very long time for
the MCMC algorithm to explore the stochastic space. If the step-size is too large, accepted
realizations will quickly explore the stochastic space, but proposals are less likely to fit the
conditioning data and thus are more likely to be rejected. In practice δk is tuned so that the
MCMC acceptance rate is around 20− 25%. There are many other transition probabilities
similar to the random walker [18] that use additional gradient information to move in likely
stochastic directions, but still take gradual steps. It is this class of algorithms that our
adaptive solver methodology is targeted because the coefficients of the linear system should
change gradually.

A more extreme transition probability is the so-called independent sampler. In this case
the current conductivity sample is not used at all in the generation of the proposal. Proposed
configuration k′ is simply generated by a new random draw from the prior distribution P (k).
This method tends to sample the stochastic space very quickly, but has a very low acceptance
rate because the chance that a randomly drawn configuration fits the conditioning data is
very low. We use the independent sampler in our numerical experiments to demonstrate
the difficulty of the linear solves when the elements of the sequence of linear systems are
unrelated.

3. Solvers.

3.1. General Multigrid. Multigrid methods are popular due to their potential to
solve N ×N sparse linear systems of equations of the form

Ax = b,(3.1)

in O(N) work. The efficiency of multigrid methods is due to two complementary processes:
relaxation and coarse-grid correction. Relaxation is a process that efficiently eliminates
oscillatory error in the approximate solution exploiting local updates. Coarse-grid correction
is a global process which utilizes a coarser grid to eliminate the smooth error left untouched
by relaxation. It does so by transferring the fine-grid residual to the coarse grid, and then
resolving the smooth error components there by solving a smaller coarse-grid version of the
equations. The coarse representation of the error is then interpolated to the fine grid and

7



used to correct the fine-grid solution [7]. A general two-grid algorithm is given in Algorithm
3.1. Note that we have used the so-called Galerkin definition of the coarse grid operator,
i.e. Ac = PT AP . The TL Algorithm with supplied initial iterate x0 provides an (SPD)
mapping b 7→ B−1

TGb = xTG − x0.

Algorithm 3.1 Two-Level (TL) Algorithm

PROCEDURE: xTG, ρTG ← TL (A, b, x0,M, P, νTG)
INPUT: Matrix A, vector b, initial iterate x0, relaxation operator M ,
INPUT: interpolation operator P , number of iterations νTG.
OUTPUT: Two-grid iterate xTG = x.
Initialize: x = x0.
for i = 1, . . . , νTG do

Pre-relax: x← x + M−1 (b−Ax).
Correct: x← x + P

(
PT AP

)−1
PT (b−Ax).

Post-relax: x← x + M−T (b−Ax).
end for

For a prescribed fine-grid linear system Ax = b, the TL Algorithm is completely defined
by the choice of relaxation operator M and interpolation operator P . Relaxation is generally
chosen such that the inverse of M is inexpensive to apply on the fine grid and be A-
convergent. That is ‖I −A

1
2 M−1A

1
2 ‖ < 1 or equivalently M + MT −A is SPD.

Numerous choices for P exist and they separate the class of multigrid methods into
several distinct categories. In the finite-element setting it is convenient to associate the
columns of P with basis functions living on the coarse grid. In geometric multigrid [7] these
coarse basis functions are simply the usual finite element basis functions associated with a
coarser mesh. In classical AMG [1] the coarse basis is defined by associating a subset of
fine-grid dofs with the coarse grid (called coarse-grid dofs) and choosing the entries of P such
that constant functions are interpolated exactly. In smoothed aggregation (SA) multigrid
([19]) a tentative interpolation operator P̂ is constructed associating coarse-grid dofs with
small groups of connected fine-grid dofs or aggregates and fixing the entries of P̂ so that
constant functions are interpolated exactly. The final interpolation operator P is obtained
by smoothing the columns of P̂ by a small number of steps of a suitable relaxation scheme.
Finally, the spectral element-based AMG (ρAMGe) method (e.g., [8]-[9], or [20]) uses the
element stiffness matrices to form local sub-problems on disjoint patches of elements (called
agglomerates). In the ρAMGe the coarse space is associated with low-lying eigenmodes of
the local operators, extended by zero to the global domain to form a tentative interpolant.

3.2. SA-ρAMGe. As the foundation of the proposed adaptive method, we begin with
a two-level version of the algorithm presented and analyzed in [6] (see also [5]), which is a
hybrid of the ρAMGe [9] and SA multigrid [19] methods. We briefly describe the method
below, but for a thorough explanation and analysis the reader is directed to [6] and the
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references therein.
We begin by partitioning the set of fine-grid elements in Th into a pre-specified number

of disjoint non-overlapping sets {T} of elements called agglomerated elements or simply
agglomerates. We will sometimes refer to this set as TH , where the characteristic mesh size
(diameter of T ∈ TH) is of order H. In addition, the set of fine-grid dofs Nh are partitioned
into a corresponding number of disjoint, non-overlapping sets {A} = {Ai}nc

i=1 such that
each A is contained in a unique agglomerate T . These sets {A} are called aggregates. Since
aggregates must be non-overlapping it is necessary to arbitrate dofs lying on the shared
boundary of two agglomerates. This arbitration is accomplished by assigning the shared
dof to the neighboring aggregate to which it is most strongly connected. To be precise, let
aij = [A]ij and define sij to be the measure of how strongly connected dof i is to dof j. One
definition of such strength measure is given by

sij =
|aij |√
aiiajj

.(3.2)

Suppose now that dof i lies on the boundary between two or more agglomerates. Define the
aggregated neighborhood of dof i as follows:

N (i) = { j | aij 6= 0 and j ∈ A` for some `} .

We then find dof jmax ∈ N (i) such that

sijmax
= max

j∈N (i)
sij .(3.3)

Finally, we assign dof i to aggregate A` such that jmax ∈ A`. A schematic of the arbitration
process can be seen in Figure 3.1.

For each agglomerate T , we assemble the local agglomerate stiffness matrix AT , con-
structed using the fine-grid element stiffness matrices Aτ for τ ∈ T . The local agglomerate
stiffness matrix can be assembled in analogy with the assembly of the global stiffness matrix
A. That is,

uT
T AT vT =

∑
τ∈T

uT
τ Aτvτ .(3.4)

For each T , we solve the following local generalized eigenvalue problem

AT qk = λkDT qk, k = 1, . . . , nT ,(3.5)

where DT is a diagonal matrix and nT is the number of fine-grid dofs in T . For our
experiments, the matrix DT is taken to be the weighted `1-smoother corresponding to matrix
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Fig. 3.1: Schematic of arbitration process. Dark grey borders indicate neighboring agglom-
erates. Filled circles indicate interior dofs naturally assigned to aggregates. Squares indicate
dofs lying on boundary of agglomerates, with filled and empty squares representing already
aggregated and unaggregated boundary dofs, respectively. Boundary dof i which is currently
being arbitrated is highlighted in orange with arrows indicating aggregated dofs that dof i

is strongly connected to. The bold arrow indicates that dof i is most strongly connected to
dof 1 and thus dof i will be added to aggregate 2.

AT . That is DT = diag (di)
nT

i=1 where di =
n∑

j=1

|aij |
√

aii

ajj
and aij = [AT ]ij . Assuming

that the eigenpairs are ordered such that λ1 ≤ λ2 ≤ . . . ≤ λnT
and for some prescribed

tolerance θ, we select the first mT ≤ nT eigenvectors such that λk ≤ θ‖D− 1
2

T AT D
− 1

2
T ‖ for

all k ≤ mT . We note that with the choice of DT being the `1-smoother, we have the simple
normalization ‖D− 1

2
T AT D

− 1
2

T ‖ ≤ 1. For convenience, we collect these local eigenvectors in
matrix QT = [q1, . . . ,qmT

]. We then restrict the columns of QT to aggregate A (where
A ⊂ T ) by extracting only the rows of QT corresponding to the dofs in A. These restricted
vectors are stored in matrix QA.

The columns of QT are linearly independent by construction, but their restriction to
A may not be. By othogonalizing the columns of QA we arrive at the local tentative
interpolant P̂A whose mA ≤ mT columns span the column space of QA. After computing
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the local tentative interpolants on each aggregate, the global tentative interpolant can be
written as a block-diagonal matrix with the local tentative interpolants as diagonal blocks:

P̂ =


P̂A1 0 0
0 P̂A2 0

0 0
. . .

...
0 0 . . . P̂Anc

 ·(3.6)

Note that P̂ is an orthogonal matrix by construction. In order to make the interpolation
operator P stable in the energy norm, the columns of P̂ are smoothed using an appropriate
polynomial smoother. The final interpolation operator can then be written as

P = SP̂ ,(3.7)

where matrix S is a polynomial in D−1A. Here D is some diagonal matrix which is spec-
trally equivalent to he diagonal of A. In practice we choose the weighted `1-smoother
corresponding to the global stiffness matrix A. The construction of interpolation operator
P is summarized in Algorithm 3.2.

Algorithm 3.2 Construction of SA-ρAMGe Interpolation Operator

PROCEDURE: P, {QT } ← BuildP (A, {T} , {A} , S, θ)
INPUT: Matrix A, agglomerates {T}, aggregates {A}, and spectral tolerance θ

OUTPUT: Interpolation operator P and local coarse basis {QT }
for each agglomerate T do

Solve AT qk = λkDT qk for k = 1, . . . , nT

Select qk s.t. λk ≤ θ‖D− 1
2

T AT D
− 1

2
T ‖ for all k ≤ mT and set QT = [q1, . . . ,qmT

]
Form QA by restricting columns QT to A ⊂ T

Orthogonalize columns of QA to obtain local tentative interpolate P̂A

end for
Construct global tentative interpolate P̂

Smooth columns of P̂ , i.e. set P = SP̂

Remark 3.1. The performance of the method greatly depends on judicious selection of
the spectral tolerance θ. If θ is chosen very small then few vectors will be added to the coarse
space. This may be sufficient for easy problems (e.g. constant coefficient Poisson) but for
the problems of interest here (e.g. Poisson with high-contrast coefficients or anisotropies) a
very small θ will cause the method to underperform. On the other hand, a θ that is too large
will result in too many vectors being added to the coarse space. In this case the convergence
properties of the TL Algorithm may be very good, but the large dimension of the coarse space
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will result in a very large coarse-grid problem which may be as costly to solve as the fine-grid
problem.

With the construction of P defined for the SA-ρAMGe method it remains to specify
the relaxation schemes to be used in the TL Algorithm and for smoothing the columns
of the tentative interpolant. It is typical in element-based AMG methods to choose large
agglomerates to allow for faster coarsening and thus smaller coarse grid problems. The
trade-off is that a powerful relaxation scheme is usually required on the fine grid to get
acceptable convergence. For our purposes we choose polynomial smoothers because of their
easy parallelization. We first define polynomial sν (t) used in SA-AMG (cf., e.g., [20]), i.e.

sν (t) = (−1)ν 1
2ν + 1

T2ν+1

(√
t
)

√
t

,(3.8)

where Tl (t) is the degree-l first-kind Chebyshev polynomial on the interval [−1,+1]. For the
interpolation smoother we choose S = sνp

(
b−1 D−1A

)
where b is a real number satisfying

‖D− 1
2 AD− 1

2 ‖ ≤ b = O (1). For the relaxation smoothing we choose M−1 = pνr

(
b−1D−1A

)
where

pν (t) =
(
1− T 2

2ν+1(
√

t)
)

sν (t) .(3.9)

Note that for interpolant smoothing parameter νp, smoothing a single column of P̂ requires
approximately νp matrix-vector multiplies with global stiffness matrix A. On the other hand,
application of the relaxation operator M−1 with parameter νr requires approximately 3νr+1
matrix-vector multiplies with A.

3.3. An Adaptive SA-ρAMGe Method. Let A = A (k) be the global stiffness ma-
trix obtained by discretizing the model problem with conductivity field k. Assume that
we have constructed a two-level mapping B = BTG based on the SA-ρAMGe procedure
described in Section 3.2. Then, in addition to interpolation operator P we also have ag-
glomerates {T}, and sets of local coarse basis vectors {QT }.

Suppose now that we wish to solve a modified problem with A′ = A (k′), where k′ is
similar to k, having come from e.g. random walk MCMC proposal. Rather than perform
the costly initial setup phase again for the new matrix A′ we wish to reuse the existing
hierarchy, if possible. If k and k′ are very similar the original hierarchy may be adequate for
solving problems involving A′. We test this by replacing A by A′ (and by extension, M by
M ′) in the TL Algorithm and then iterating on the homogeneous equation A′x = 0 using
the unmodified P from the previous hierarchy. That is, we perform νa steps of iteration

xk ←
(
I −B−1

TGA′)xk−1(3.10)
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with random x0. This, in effect, computes an approximation to the minimal eigenvector of
B−1

TGA′. We monitor the convergence ‖xk‖A′ 7→ 0 for k 7→ ∞ by computing, e.g.

ρ2
k =

xT
k A′xk

xT
k−1A

′xk−1
, k = 1, 2, . . . .(3.11)

The asymptotic convergence factor ρTG is approximated by taking the average over the
last several values of ρk. Let ρtarget be some prescribed acceptable (or desired) convergence
factor for the method. If ρTG ≤ ρtarget then we accept B′

TG = BTG as the new solver. If
the convergence of the method is not adequate, then the current coarse space defined by P

does not capture some components of the algebraically smooth error (or near null-vector of
B−1

TGA′) with respect to the modified system. Fortunately, the iterative solution of A′x = 0
using the current method automatically exposes the smooth error mode that the method
cannot resolve, namely the vector xk after νa iterations of the solver. We set xbad = xνa

and form its restriction xbad
T = xbad|T on every agglomerate T .

If the modified conductivity field k′ does not differ too much from k then it may be the
case that the previous coarse space on each agglomerate T is nearly sufficient for solution
of the modified problem. We now attempt to build a coarse space based on the old local
coarse space and augmented with xbad

T . For each T , we solve the modified local generalized
eigenvalue problem

A′
T zk = µkD′

T zk, k = 1, . . . ,mT + 1(3.12)

in the subspace Span
{
QT , xbad

T

}
. Note that this eigenproblem is solved in a much smaller

subspace than in the non-adaptive algorithm described in Section 3.2. Then, for spectral tol-
erance θ, we select the first m′

T ≤ mT +1 eigenvectors such that µk ≤ θ‖(D′
T )−

1
2 A′

T (D′
T )−

1
2 ‖

for all k ≤ m′
T . These vectors are then stored in matrix form as ZT =

[
z1, . . . , zm′

T

]
.

We now proceed as in the non-adaptive algorithm with the new local eigenvectors ZT .
The next step is to restrict the columns of ZT to the local aggregate dofs. Recall that in
the selection of aggregates it was necessary to arbitrate those dofs lying on agglomerate
boundaries. Since the coefficients have changed in A′ the dof connections used to compute
the strength of connection measure in the arbitration process have also changed. As such it is
prudent to re-arbitrate the boundary dofs with respect to the coefficients of A′. We note that
this computation is relatively inexpensive and does not greatly affect the data structures
in the code. With new aggregates in hand we restrict the columns of ZT to aggregates,
orthogonalize the restricted vectors, build and smooth the global tentative interpolation
operator to obtain the modified interpolation operator P ′. This, together with the modified
matrix A′, defines the modified two-level mapping B′

TG.
The new hierarchy is tested by iterating on A′x = 0 and monitoring ‖x‖A′ → 0. If

measured convergence factor ρ′TG satisfies ρ′TG ≤ ρtarget then the new method is accepted
13



and used in the solution of the forward problem for proposal conductivity field k′. If conver-
gence is still unacceptable then the adaptive process is repeated until a method is obtained
with the desired performance properties. If the convergence of the method fails to improve
by some prescribed amount (e.g. ρ′TG ≤ δcρTG with, say, δc = 0.9) it may be necessary
to increase the spectral tolerance θ for the next adaptive iteration. This will allow more
vectors to be added to the coarse space and should improve convergence.

There are many strategies for increasing the spectral tolerance θ during the adaptive
process. An attractive naive strategy may be to simply increase θ by some small constant
factor (a factor of 2, say). For difficult problems this naive strategy can quickly lead to
coarse spaces that are too large to be computationally efficient. The strategy that we
employ is as follows. Recall that as a necessary step in the adaptive procedure we compute
eigenvalues {µk} of the local problems for each agglomerate. Then, on each agglomerate
T , we construct the coarse space using the m′

T eigenvectors with eigenvalues satisfying
µk ≤ θ‖(D′

T )−
1
2 A′

T (D′
T )−

1
2 ‖ where m′

T ≤ mT + 1. The updated spectral tolerance θ′ is
computed as

θ′ =
1
nc

nc∑
i=1

µ
(Ti)
min(m′

Ti
,mTi

)+1.(3.13)

This quantity is an average over two different values: On agglomerates Ti where some eigen-
vectors are not accepted into the coarse space, the eigenvalue of the smallest rejected mode,
namely µ

(Ti)
m′

Ti
+1, is used in the average. This tells the algorithm that a spectral tolerance of

this size would have allowed another potentially useful vector to be added the coarse space.
On agglomerates where all mTi + 1 eigenvectors are accepted, the largest computed eigen-
value, µ

(Ti)
mTi

+1, is used in the average. This choice is made because if there were only a few
agglomerates with rejected vectors the previous value of θ might be acceptable and another
similar adaptive iteration will improve solely from the computation of a new smooth error
component.

A major advantage of the proposed adaptive procedure is its ability to trim components
of the coarse basis (i.e., to achieve de-refinement) that are no longer necessary for the current
configuration. In the course of a MCMC simulation, thousands of configurations will be
proposed. If the adaptive procedure simply augmented the previous coarse space with the
new necessary basis vectors at every stage, the complexity of the solver would quickly grow
to unacceptable levels. The spectral nature of the proposed method remedies this concern.
If a coarse basis vector from the previous hierarchy is no longer necessary for the modified
system then it will have an associated eigenvalue in the local eigenproblem greater than the
spectral tolerance, and thus will be excluded from the new coarse basis. This keeps the size
of the coarse basis in check over the course of the simulation.

It should be clear then that the choice of θ is exceedingly important. If θ is too small
then the adaptive update may trim vectors from the coarse basis that would in fact be
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Algorithm 3.3 Adaptation of Hierarchy to New Matrix

PROCEDURE: P ′, {ZT } , θ′ ← AdaptP (A′, {T} , {QT } , νa, θ, ρtarget)
INPUT: Matrix A′, agglomerates {T}, local coarse basis {QT }, spectral tolerance θ, and
threshold δc used to change θ

OUTPUT: Interpolation operator P ′, local coarse basis {ZT }, spectral tolerance θ′

Iterate on A′x = 0 with existing solver, i.e. x, ρTG ← TL (A′, 0, x,M ′, P, νa)
if ρTG ≥ ρtarget then

Reassign dofs to aggregates {A} based on A′

end if
while ρTG ≥ ρtarget do

Set xbad = xνa

for each agglomerate T do
Set xbad

T = xbad|T
Solve A′

T zk = µkD′
T zk in Span

{
QT , xbad

T

}
for k = 1, . . . ,mT + 1

Select zk s.t. µk ≤ θ‖(D′
T )−

1
2 A′

T (D′
T )−

1
2 ‖ for all k ≤ m′

T and set ZT =
[
z1, . . . , zm′

T

]
Form ZA by restricting columns ZT to A ⊂ T

Orthogonalize columns of ZA to obtain local tentative interpolate P̂ ′
A

end for
Construct global tentative interpolate P̂ ′

Smooth columns of P̂ ′, i.e. set P ′ = SP̂ ′

Iterate on Ax = 0 with updated solver, i.e. x, ρ′TG ← TL (A′, 0, x,M ′, P ′, νa)
if ρ′TG ≥ δc ρTG then

Update spectral tolerance, i.e. compute θ′ according to (3.13)
end if

end while

useful for improving convergence. Conversely, if θ is too large vectors that were useful
for the previous linear system may be retained (thus increasing the cost of the method)
without a noticeable benefit to performance. The update scheme given in (3.13) and used
in Algorithm 3.3 gives a method for increasing the value of θ when the current method is
inadequate. However, this does not allow for the possibility that θ may be too large and
could be decreased without hampering performance (in fact, if the coarse space contains
many vectors that are not necessary, decreasing θ could improve overall performance.) We
propose the following scheme for improving the initial value of θ when the adaptive update
is called. Let θn be the value of θ at the end of the solve-phase for the nth linear system.
Then, if adaptation is necessary for the (n + 1)st configuration, the adaptive algorithm is
called with spectral tolerance θn+1 given by

θn+1 = κθn + (1− κ) θ̃,(3.14)
15



where θ̃ is the average over all {θi}n−1
i=1 and κ is a tuning parameter. This strategy allows θ

to effectively remember where it has been. In the case that the sequence of linear systems
has some members that are very difficult compared to the rest, it would be unfortunate
if the method was automatically tuned to accommodate these outliers, and in the process
became more costly than necessary for future typical configuration.

3.4. Practical Considerations. Suppose now that we wish to use the proposed adap-
tive procedure in a simulation where many thousands of slowly changing linear systems of
the form A (k) x = b must be solved. If the coefficients do not change too much it should
be the case that the current solver is adequate to use in the solution of several consecutive
systems in the sequence. According to Algorithm 3.3, rather than immediately attempting
to solve a new system A′x = b we should first test the current hierarchy by solving A′x = 0.
In the case that the solver remains adequate for several systems in the sequence, this initial
test will greatly increase the computational cost of the solver. We propose a more pragmatic
strategy. For a new system A′x = b we apply ν0 iterations of the TL-Algorithm with the
existing coarse space defined by P and right-hand side vector b. That is

xTG, ρ0 ← TL (A′, b, x0,M
′, P, ν0) .(3.15)

In this case we measure the convergence of the solver using the ratio of consecutive residuals.
That is, we compute

ρk =
‖rk‖B−1

T G

‖rk−1‖B−1
T G

k = 1, . . . , ν0,(3.16)

and set ρ0 equal to the average of the last several ρk’s. For reasonable choices of ν0 we can
be confident that a good convergence factor measured during this initial test indicates that
the solver is still adequate for the current linear system. The solve is then continued until
the desired tolerance is met, at which point we have the desired solution and we can move
on to the next coefficient. If it is the case that ρ0 is not adequate the adaptive procedure is
called and the current hierarchy is improved.

The final practical modification we make concerns the number of inner adaptive cycles
used when adaptation of the hierarchy is required. In Algorithm 3.3 the convention is
to continue adapting until the measured convergence falls below ρtarget and then return
the updated hierarchy. There are a few instances where this rigid practice may hurt the
efficiency of the method. In the setting of MCMC simulation it may be the case that
a very pathological configuration may be proposed. In this case, the adaptive procedure
may require many inner adaptive cycles before the desired performance is reached. After
doing substantial work to adapt the method to suit this pathological case, it is likely that
the proposal will be rejected by the MCMC algorithm, rendering the effort invested in
the adaptation useless for future configurations. This case suggests the utility of setting a
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maximum number of inner adaptive cycles that the user is willing to commit to any one
configuration. On the other hand, in MCMC simulation the situation occasionally arises
when adaptation is called and adequate performance is restored by running a single inner
adaptive cycle. Then, on the next proposed configuration, it may again be the case that
adaptation is necessary and the performance threshold is again satisfied by running a single
inner adaptive cycle. Although the overhead involved in the setup of the adaptive algorithm
(e.g. re-arbitration of the aggregates) is minor, we would prefer to update a coarse hierarchy
and have it remain viable for several more linear systems in the sequence. As such, it may
be prudent to perform, say two, inner adaptive cycles, even if the convergence threshold is
reached on the first, with the aim that the additional work will pay off in the long term.
This scenario suggests the utility of setting minimum number of inner adaptive cycles per
adaptation. The compromise between the two is, of course, to prescribe a fixed number of
inner adaptive cycles, νf , to be performed whenever adaptation is necessary.

4. Numerical Experiments. We test the proposed method in the setting of MCMC
simulation of steady-state single-phase flow with uncertainty in the hydraulic conductivity
field. The model problem with a mix of Dirichlet and Neumann boundary conditions is
given in (4.1).

−div [k (x, ω)∇p (x, ω)] = 0 in [0, 1]2 × Ω

p (x) = 1− x1 on x1 = {0, 1}(4.1)

∇p (x) · n = 0 on x2 = {0, 1}

We test the method on the model problem with three increasingly challenging forms of k,
corresponding to scalar, grid-aligned anisotropic, and non-grid-aligned anisotropic conduc-
tivity tensors. Furthermore, we test all cases on linear systems arising from both linear
and quadratic finite-element discretizations using a uniform triangular fine-grid mesh. The
uncertainty in the conductivity field is modeled using the definitions provided in Section
2.3. That is, we let YM (x, ω) be a Gaussian process with two-point correlation structure
(see (2.10)) expanded in an M -term truncated KLE, (2.9). In our experiments we choose
M = 1000, Y0 ≡ 0, σ2

k = 3, and γ1 = γ2 = 0.1. In the case of scalar diffusion we model the
conductivity as a log-normal, i.e.

kS(x, ω) = exp [YM (x, ω)] .(4.2)

For the chosen set of parameters, realizations of kS often vary as many as six orders of
magnitude over small regions in the domain. Two sample realizations of YM with the given
parameters are shown in Figure 4.1.
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Table 4.1: Two realizations of the YM (x, ω) based on the given model parameters.

The model problem becomes significantly more difficult in the case of anisotropic con-
ductivity. As such, we model the component stochastic processes in the diffusion tensors
using at most quadratic powers of YM . The grid-aligned (kG) and non-grid-aligned (kN )
conductivity tensors are given as follows: Let YM,x ≡ YM,x(x, ω) and YM,y ≡ YM,y(x, ω) be
realizations from the stochastic process described above (subscripts x and y indicate only
that they are distinct from each other). Then the two anisotropic conductivity tensors are
given as follows:

kG (x, ω) =

[
Y 2

M,x + ε 0
0 Y 2

M,y + ε

]
,(4.3)

kN (x, ω) =

[
Y 2

M,x + ε YM,yYM,x

YM,xYM,y Y 2
M,y + ε

]
,(4.4)

where ε is some small parameter which controls the strength of the anisotropy.
In the MCMC simulation, sampling is conditioned on pressure data at 9 fixed locations

in the domain. For each problem formulation, the simulation is run using fixed likelihood
variance σ2

f for both the random walker and independent sampler transition probabilities.
The value of the random walk step-size δk (see (2.14)) is tuned so that the MCMC acceptance
rate is between 20−25%. In the case of the random-walk transition probability we run several
simulations for a total of 5000 MCMC iterations. For the indepdent sampler test we run
one simulation with 2000 MCMC iterations. Each linear solve is considered complete when
the SA-ρAMGe-preconditioned relative residual has been reduce by a factor of 10−8.

The solver performance is measured via the average convergence factor (ρ) over all
simulation runs, where the two-level hierarchy is used as a stationary iterative method.
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For practical purposes, we also solve each system with the two-level hierarchy used as a
preconditioner for the conjugate gradient method (given in parentheses in the tables). As
an indication of the cost of the two-level cycle the average operator complexity (CA) is
reported, where CA is a measure of the number of nonzeros in the operators of the two-level
hierarchy versus the number of nonzeros in the fine-grid operator:

CA =
nnz (A) + nnz

(
PTAP

)
nnz (A)

.(4.5)

We also report the percentage of configurations in the run for which adaptation is necessary
(Nr) as well as the average number of inner adaptive cycles needed to improve convergence
to acceptable levels (Nb). Finally, the average value of the spectral tolerance (θ) over the
course of the simulation is reported. In all cases θ is initialized to θ = 0.001 at the beginning
of the simulation. To contrast the current method with more traditional AMG methods, we
have tested the two-level version of the classical Ruge-Stüben AMG method (as implemented
in [17]) on represented samples from each simulation and reported the average convergence
factors.

4.1. Scalar Conductivity Field. Table 4.1 displays the solver performance for sim-
ulations run with log-normal scalar conductivity field kS . The likelihood variance was set
to σ2

f = .009 for each MCMC simulation. When the random walk transition probability
is used the random walk step-size is set to δk = .085. The agglomerates are chosen such
that the coarsening factor is approximately H/h = 12. This is very aggressive coarsening
but it is suitable in this case because the coefficient is scalar. The smoothing parameters
in the solver are set to νr = 1 and νP = 4. In the adaptive cycle, the smooth error mode
is approximated by performing νa = 20 stationary iterations with the current hierarchy on
the homogeneous system. The convergence of the solver is considered adequate if it is faster
than ρtarget = 0.9. Finally, when the random walker is used we fix the number of inner
adaptive cycles at νf = 1 as described in Section 3.4. Since consecutive linear systems in
the independent sampler MCMC are unrelated we do not expect the adaptive update to be
optimal. As such, we allow the adaptive method to do as many as νmax = 5 inner adaptive
cycles, but allow it to exit early if the desired convergence is reached.

It is clear from Table 4.1 that, in the case of scalar conductivity with random walk
MCMC, the basic method provides a rich enough course space that adaptation is rarely,
if ever, necessary. This is true for both the linear and quadratic finite element test cases.
Adaptation is also rarely necessary when the independent sampler is used with linear finite
elements. When quadratic finite elements are used in conjunction with the independent sam-
pler adaptation is required quite frequently, but when it is required a single inner adaptive
cycle is sufficient to restore good convergence. The scalar conductivity diffusion problem is
a fairly simple and can typically be solved with a traditional AMG method, though these
methods are not guaranteed to remain adequate as the magnitude of the contrast increases.
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Transition Elem Type nf ρ CA Nr Nb θ

random walk linear 16641 0.92 (0.53) 1.01 0.9% 1.00 0.001
random walk linear 66049 0.89 (0.47) 1.01 0.0% NA 0.001
random walk quadratic 66049 0.92 (0.57) 1.01 1.2% 1.00 0.005
random walk quadratic 263169 0.92 (0.57) 1.01 0.8% 1.00 0.005
independent linear 16641 0.91 (0.52) 1.01 1.2% 1.08 0.002
independent linear 66049 0.88 (0.48) 1.01 0.0% NA 0.001
independent quadratic 66049 0.92 (0.58) 1.02 58% 1.01 0.006
independent quadratic 263169 0.92 (0.57) 1.02 38% 1.00 0.005

Table 4.2: Average results for simulation with scalar conductivity field. The MCMC accep-
tance rate using the random walker and independent sampler were 23% and 1%, respectively.

The two-level Ruge-Stüben AMG solver attained an average stationary convergence factor
of approximately ρRS = 0.05 on both linear test cases. However, the traditional AMG
solver performs very poorly in the quadratic case, achieving a convergence factor of only
ρRS = 0.99. Clearly the proposed method is the better choice with higher-order elements,
and although the proposed method is not directly aimed at simple scalar conductivity prob-
lems, it is likely that for large problem sizes and highly varying coefficients the proposed
method would out-perform traditional AMG for linear finite elements as well.

4.2. Anisotropic Conductivity Field. Tables 4.2 and 4.3 display the solver per-
formance for simulations with grid-aligned and non-grid-aligned anisotropic conductivity
fields, respectively. In all cases the anisotropy parameter is set to ε = 0.001. The likelihood
variance is again set to σ2

f = .009. When the random walk transition probability is used
the random walk step-size is set to δk = .06. For the anisotropic problems the agglomerates
are chosen with a less aggressive coarsening factor of H/h = 6. The smoothing parameters
in the solver are set to νr = 2 and νP = 2. In the adaptive cycle, the smooth error mode is
again approximated by performing νa = 20 stationary iterations with the current hierarchy
on the homogeneous system. Again the target convergence factor is set to ρtarget = 0.9. Fi-
nally, when the random walker is used we fix the number of inner adaptive cycles to νf = 3.
In the simulations using the independent sampler we again allow the adaptive method to
do up to νmax = 5 inner adaptive cycles.

In the case of grid-aligned anisotropy we see that adaptation is again necessary only very
rarely when linear finite elements and the random walker are used. The case of quadratic
finite elements is more difficult, requiring adaptation approximately 25% of the time for
the largest grid. However, when adaptation is necessary three inner adaptive iterations
are sufficient to bring the performance back to acceptable levels. When the independent
sampler is used it becomes necessary to adapt the hierarchy quite often. Not surprisingly,
the simulations using the independent sampler require very frequent adaptation, especially
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Transition Elem Type nf ρ CA Nr Nb θ

random walk linear 16641 0.87 (0.44) 1.03 0.1% 3.00 0.001
random walk linear 66049 0.90 (0.47) 1.06 0.8% 3.00 0.005
random walk quadratic 66049 0.92 (0.56) 1.01 3.4% 3.00 0.002
random walk quadratic 263169 0.92 (0.58) 1.01 25% 3.00 0.001
independent linear 16641 0.88 (0.46) 1.04 0.7% 1.54 0.021
independent linear 66049 0.92 (0.51) 1.05 12% 1.47 0.045
independent quadratic 66049 0.93 (0.56) 1.02 90% 1.37 0.008
independent quadratic 263169 0.94 (0.51) 1.18 83% 2.74 0.043

Table 4.3: Average results for simulation with grid-aligned anisotropic conductivity field.
The MCMC acceptance rate using the random walker and independent sampler were 24%
and 1%, respectively.

when quadratic elements are used. However, on average less than two inner adaptive cycles
are sufficient to restore good convergence. The traditional AMG method is able to achieve
the reasonable convergence factor of ρRS = 0.5 for the linear finite-element case, but again
degrades to ρRS = 0.99 for the quadratic elements.

Transition Elem Type nf ρ CA Nr Nb θ

random walk linear 16641 0.90 (0.48) 1.19 3.1% 3.0 0.005
random walk linear 66049 0.89 (0.44) 1.48 7.2% 3.0 0.025
random walk quadratic 66049 0.92 (0.55) 1.13 14% 3.0 0.004
random walk quadratic 263169 0.94 (0.58) 1.21 65% 3.0 0.003
independent linear 16641 0.90 (0.46) 1.23 100% 1.91 0.021
independent linear 66049 0.89 (0.42) 1.42 100% 2.71 0.036
independent quadratic 66049 0.96 (0.65) 1.12 100% 4.99 0.005
independent quadratic 263169 0.98 (0.81) 1.14 100% 5.00 0.004

Table 4.4: Average results for simulation with non-grid-aligned anisotropic conductivity
field. The MCMC acceptance rate using the random walker and independent sampler were
24% and 1%, respectively.

The non-grid-aligned anisotropic diffusion problem is notoriously difficult to solve. The
two-level traditional AMG method used in our numerical experiments did not achieve a
converge factor smaller than ρRS = 0.99 in any of the test cases. Even spectral-based AMGe
methods typically require large coarse spaces and very powerful relaxation schemes to solve
the problem with reasonable speed. The numerical experiments indicate that the proposed
method can achieve reasonable convergence factors in the case of the random walk MCMC
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and requires very little adaptation when linear finite elements are used. When quadratic
finite elements are used it must adapt for just over half of the configurations, but three inner
adaptive iterations are sufficient to restore good performance. This provides considerable
speed-up over the alternative of building new hierarchies from scratch for each realization of
the conductivity field. Note that when the independent sampler is used adaptation becomes
necessary for nearly every realization, and requires many more inner adaptive cycles to
obtain good convergence. In fact, for quadratic finite-elements it would likely be more
efficient to build the coarse hierarchy from scratch for each new conductivity field. This
should not be surprising since the proposed method is designed specifically for the case
when the background coefficient changes gradually, unlike in the independent sampler case
when the consecutive configurations are completely independent.

5. Conclusion. In conclusion, we have presented a two-level adaptive framework,
based on SA-ρAMGe multigrid, that allows for rapid solution of sequences of linear systems
originating from discretization of elliptic PDE with slowly varying conductivity coefficient.
For simple problems (e.g. scalar conductivity tensor and linear finite elements) the hierarchy
is robust enough that it provides efficient solution of many linear systems where the conduc-
tivity may vary many orders of magnitude over small length scales. For difficult problems
(e.g. anisotropic conductivity tensors and higher-order finite elements) the solver displays
good performance for several consecutive linear systems. When performance degrades our
method allows for rapid update of the two-level hierarchy which restores good performance
at a fraction of the original setup cost. We demonstrated the effectiveness of the method in
the context of Markov Chain Monte Carlo simulation of steady-state subsurface flow.
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